Order from us for quality, customized work in due time of your choice.
The scientific method is the steps used to ask questions and develop sufficient data to answer the question. The scientific method provides steps in which to follow when testing a hypothesis or theory. The researcher through his and her, standardized steps they can observe, and developed a hypothesis or theory, and answers can be found. Forensic science applies science helps to developing evidence that help in civil or criminal cases. Forensic science comes in many disciplines each applying the scientific method to developing evidence that will point to the guilt or the innocence of the criminal offender in question, this helps in curtailing the humanistic aspects of prejudice and bias during the consideration of the set theories and hypothesis.
In the past, the scientific method, a time-honored approach for discovering and testing scientific truth, does not and cannot work for the forensic sciences in its standard form because it does not work for past events. However, under careful consideration and slight modifications, the scientific methods are now used in forensic science and incorporated into the criminal investigation science (Becker, 2009).
The scientific method is comprised of four steps:
- observation and description of a phenomenon or group of phenomena;
- formulation of a hypothesis (or hypotheses) to explain the phenomena;
- use of the hypothesis to predict the existence of other phenomena, or to predict quantitatively the results of new observations; and
- performance of experimental tests of the predictions by several independent experimenters. (Wolfs, 2007, 3.)
Observation and Description of A Phenomenon Or A Group Of Phenomena
The first step involved in the scientific method is the observation and description of a phenomenon or a group of phenomena. The forensic examiner must observe an incident or situation. How this scientific method step relates to forensic science would be, for example, in a crime scene investigation involving ballistics. The observation would be of a bullet impression in an environment. Perhaps the defense in the case would rise in their legal argument that the defendant could not possibly have murdered the victim given the point of entry and point of exit wounds or the type of bullet involved. The forensic examiner on the case may have the responsibility of disputing this claim. Forensic ballistic examination in criminal cases is not limited solely to ballistics, rather encompasses bloodstain pattern analysis as well involving projectile. The following paragraph will discuss the formulation of a hypothesis.
Formulation of A Hypothesis (Or Hypotheses) To Explain the Phenomena
The second step involved in the scientific method is the formulation of a hypothesis (or hypotheses to explain the phenomena. Essentially, this is the framing of a question or theory around the incident. Perhaps there is a particular firearm in question or perhaps the firearm is undetermined at this juncture. The forensic examiner would then determine whether or not the bullet came from a particular gun in question. Tool mark and firearm examinations would be conducted to determine, consisting of analysis of ammunition, tool mark and firearm evidence, to establish whether the weapon in question was employed during the commission of the crime in question. Trajectory paths would also be examined to conduct the bullets route. The following paragraph will discuss the usage of the hypothesis to predict the existence of other phenomena or to quantitatively predict new observation results.
Use of The Hypothesis to Predict The Existence Of Other Phenomena, Or To Predict Quantitatively The Results Of New Observations
The third step involved in the scientific method is the use of the hypothesis to predict the existence of other phenomena, or to predict quantitatively the results of new observations. The hypothesis is the tentative answer to the question: a testable explanation for what was observed. (Carter, 1996, 13.) The forensic examiner or scientist attempts to explain what has been observed. This cause and effect relationship, the hypothesis is the possible cause, while the observation is the effect. This is not to be confused with a generalization, as a generalization is based on inductive reasoning. The hypothesis is the potential account for the observation. (Carter, 1996, 15.) Forensic scientists and all scientists in general:
build on the work of previous researchers, and one important part of any good research is to first do a literature review to find out what previous research has already been done in the field. Science is a process new things are being discovered and old, long-held theories are modified or replaced with better ones as more data/knowledge is accumulated. (Carter, 1996, 19.)
Science is a continually evolving discipline involving ongoing research. Oftentimes experts have presented erroneous opinions, which must be challenged. The following paragraph will discuss the importance of experimental tests conducted by several independent experimenters.
Performance of Experimental Tests of The Predictions By Several Independent Experimenters
The fourth and final step involved in the scientific method is the performance of experimental tests of the predictions by several independent experimenters. This aspect actually denotes whether or not the hypothesis is supported by the results. Once the experimentation has been conducted and predicted results achieved, the hypothesis is reflected to be plausible. The experiment must be a controlled experiment performed by several independent experimenters. The forensic examiners, scientists must contrast an experimental group with a control group. (Carter, 1996, 15.) The replication aspect, several experiments, is critical. The experimentation should be attempted various times on various subjects. This is imperative to determine that a result is not simply coincidental, rather intended, and certain.
Forensics science is critical in the application to law and legal questions as justice is hinging on steadfast and accurate results. Fortunately, science and technology have vastly improved in recent years to reduce the number of erroneous indictments and convictions for the innocent. Likewise, this discipline is reaching perfection in that an offender or culprit is almost certain to be apprehended given the likelihood that minute strands of trace evidence is almost always located at the scene of a crime.
Striving for excellence is oftentimes accompanied by adversity, as in Galileos stance; according to Bergman, the actual threat of Galileo to his contemporary scientists was less his position on heliocentricity than his insistence on observation, research, and experimentation to determine reality. It was for this reason that G. A. Magnini, an eminent astronomy professor at Bologna, openly declared that Galileos observations, which indicated that Jupiter had satellites, and must be incorrect. Although the scientific revolution emerged gradually, and many of Galileos ideas can be traced to before the thirteenth century, Galileo openly challenged the whole system of determining truth that existed then, and therein lay most of his problems (Bergman, 2004, 20.)
Conclusion
This essay has discussed the four steps of the scientific method in relationship to forensic science, providing examples of how each step is incorporated into the process during a criminal investigation. The accuracy of the findings of forensic examination is critical in the publics reliance and the credibility of the criminal justice process. It is important that evidence is not compromised for these experts to perform their craft with conviction.
References
- Bergman, J. (2004). The Great Galileo Myth. Retrieved February 3, 2008, from A.D.A.M. Web site: http://www.adam.com.au/bstett/ReligGalileoMyth95.htm
- Becker, R. F. (2009). Criminal Investigation. Sudbury, MA: Jones & Bartlett Learning
- Carter, J. (1996). The Scientific Method. Retrieved February 3, 2008, from University of Cincinnati Web site: http://biology.clc.uc.edu/courses/bio104/sci_meth.htm
- Wolfs, F. (2007). Appendix E. Introduction to the Scientific Method. Retrieved February 3, 2008, from University of Rochester Web site: http://teacher.nsrl.rochester.edu/phy_labs/AppendixE/AppendixE.html
Order from us for quality, customized work in due time of your choice.